Gale Crater: Context and layer diversity from HiRISE images

Brad Thomson Nathan Bridges

JPL/Caltech

Key Moon-Mars differences

- 1. Outflow channels
 - > VL1, Pathfinder
- 2. Valley networks
 - > Spirit
- 3. Finely layered sedimentary sequences
 - > ~Opportunity, MSL?

Stratigraphic Framework

Grotzinger et al., 2005

Stratigraphic Framework

Stratigraphic Framework

Geologic cross-section

V.E. = 4.7

Edgett & Malin, 2000 LPSC Malin & Edgett, 2000 Science

Lower Mound

Lower mound layers

PSP_001488_1750 (& PSP_001752_1750)

- Layers 10-30 m thick
- Apparent slope ~2°

Upper Mound

Upper mound layers

Contact geometry

- Mapped upper unit contact (unconformity)
- Extracted MOLA interpolated elevation points along contact
- Best-fit plane is non-horizontal
- Geometry inconsistent with simple lacustrine depositional process
 - Max elevation difference ~1.6 km
 - Suggestive of eolian control of surfaces of omission

Diversity summary

Lower Mound units have distinct characteristics from Upper Mound, suggesting environmental differences

Lower Mound:

- Units with distinct mineralogic signatures that result from aqueous alteration
- Cemented and inverted fractures suggests fluid flow (potentially indicates some in situ alteration)

• Upper Mound:

- Erosional morphology, thermal inertia suggests fine-grained component, possibly eolian
- Attitude of erosional unconformity suggests eolian control of surfaces of omission
- Channels sourced from Upper Mound suggest additional volatile components

Age context

Overall summary

Context: Low-energy sedimentary depositional environment; general age constraints can also be inferred.

- Closed depositional basin.
- Gale representative of numerous exposures of layered sedimentary units on Mars, non-uniform in space and time
- Long sedimentary record captures environmental changes during deposition.
- Formation mechanism: What can we rule out?
 - **Unlikely:** impact ejecta, effusive volcanism, pedagensis (acting alone), volcaniclastics (lack of regular repetition)
 - Possible: lacustrine deposition, eolian deposition

Context summary

Context: Low-energy sedimentary depositional environment; general age constraints can also be inferred.

- Closed depositional basin.
- Gale representative of numerous exposures of layered sedimentary units on Mars, non-uniform in space and time
- Long sedimentary record captures environmental changes during deposition.
- Formation mechanism: What can we rule out?
 - **Unlikely:** impact ejecta, effusive volcanism, pedogenesis (acting alone), volcaniclastics (lack of regular repetition)
 - Possible: lacustrine deposition, eolian deposition
- → Low-energy deposition of particles via settling from suspension in a fluid (wind or water). Even if eolian, aqueous processes played a significant role.

Extra: Ellipse science

